
Antenna synthesis using the Orchard-Elliotts
method ∗

Johan Skatt, e93 jsk@e.kth.se

Stefan Petersen, e92 spe@e.kth.se

Daniel Ringström, e92 dri@e.kth.se

1997-05-20

∗Typeset in LATEX

1

Abstract

The given task was to, with the use of the Orchard-Elliott method, synthesis
a shaped beam antenna pattern. Here it will be shown how this can be done
using Matlab and a little C.

There is also some simplifications introduced to the OE-method that
speeds up calculations, these simplifications gave as a bonus the ability to
use a non-derivable function as the shaping function. Some alternative ideas
on the optimization of excitations are also presented.

2

1 Objective

The objective of this project was to synthesis a shaped-beam antenna pattern
according to the specifications in section 2.

There were also specified that the Orchard-Elliott [1] method should be
used, which is described in section 3.

2 Specification

The following data were given:

• 41 isotrope elements

• Distance between each element: d = λ/2

• The level of the sidelobes should be −20 dB for 0◦ < θ1< 110◦

• Mainlobe should be shaped as csc2 for 110◦ < θ2 < 150◦,
ripple < ±0.5 dB

• The level of the sidelobes should be −30 dB for 150◦ < θ < 180◦

3 Orchard-Elliotts (OE) method

The idea of OE is that with the technique of placing roots, on or about the
unit circle, the desired pattern is to be approximated. In the shaped region
(region I) the roots are displaced from the unit circle and in region II, see
figure 1, the roots are placed on the unit circle to suppress sidelobes.

Starting with the arrayfactor as:

F =
N∑

n=0

Ine
jnkd cos θ (1)

(1) can then, with the substitutions ψ = kd cos θ and w = ejψ, be written:

F =
N∑

n=0

Inw
n = {Factor the polynom} =

= IN

N∏
n=1

(w − wn) =
{
w = ean+jbn

}
=

N∏
n=1

(w − ean+jbn)

(2)

1θ measured from endfire
2The true limits is 20◦ < θ < 60◦ because in the specification θ is measured with

broadside as referense

3

0 20 40 60 80 100 120 140 160 180
−35

−30

−25

−20

−15

−10

−5

0

Figure 1: Specified antenna pattern

According to this the arrayfactor may be described using a polynom with N
roots. Letting the root wN be fixed at −1, e.g. aN = 0 and bN = π. This
allows us to write F , after taking the absolute value and logarithmizing it,
as:

G = lg |F |2 =
N−1∑
n=1

10 lg[1− 2ean cos(ψ − bn) + e2an] +

+ 10 lg[2(1 + cosψ)] + C1

(3)

Were the constant C1 has been added to allow G to float up and down, so
the maximum level may be set to 0 dB.

Now let N1 represent the number of roots in region I and N2 the ones
placed in region II. This gives us the total amount of roots as N = N1+N2+1.

The parameters available for placing the roots are an och bn. Let an = 0 in
region II and an 6= 0 in region I, the sign of an does not interfer with the form
of the beam because ean or e−an is related as mirroring in the unit circle. This
leavs us with 2N1 eligible parameters in region I and N2 parameters in region
II, also C1 may be choosen freely. The total amount of eligible parameters
may therefore be written as N3 = 2N1 + N2 + 1. These N3 parameters are
assumed assembled into a vector x in following order. The first N1 positions

4

contains the an:s in region I next N2 positions contains the bn:s in region
II followed by the N1 bn:s in region I, the C1 constant is placed in the last
position of the vector.

In region I the use of a shaping function is necessary to specify the desired
shape of the beam. In this case csc2. S(ψ) then gives the ideal behavior of
G in region I. Unfortunately it is not possible for G to behave exact as S
(with the use of a infinitly amount of roots it would be possible). It is easily
shown that the best approximation is to let G oscillate around S, compare
to the Fourier series [2].

In region II the only specification that has to be made is the maximum
allowed value of G, which of course will be set to the desired one. This
meens that there is no reason to comprimize between the desired shape of
the pattern and the one that is available using G.

3.1 The algorithm in practice

Now how should this be accomplished?
Well if done by hand you would be forced to choose a good start guess for

an and bn to avoid large and complicated calculations. Usage of a computer
makes the start guess less interesting. The computer makes it possible to
choose a simpel start guess and then iterate towards desired antenna pattern.

First we have to specify the values for the maximas of G in region II
and the maximas and minimas of G− S in region II. They will of course be
of same number as the roots, N3. Let the specified values be placed into a
vector g. This vector should for convenience have its elements placed from
left to right according to figure 1. This means that the values corresponding
to the roots that are stationed on the unit circle are placed into the first N2

positions next, in the following 2N1 + 1 positions the maximas and minimas
for the beam G minus the shaping function S are placed in alternating order.
This procedure makes the last position contain the value of G−S at the peak
of the shaped region, which may be used to calculate C2.

Now we have a nice specification, so lets choose some neat starting values
for an and bn. The starting guess may be choosen as:

bn =

(
2n

N + 1
− 1

)
π, n = 1, 2, . . . , N − 1 (4)

an = 0, n = 1, 2, . . . , N2 (5)

an = 0.02, n = N2 + 1, . . . , N − 1 (6)

5

Now we have to locate the maximas/minimas of G that are generated by
the starting guess. To do this in a efficent way let us use Newtons algorithm.
This algorithm converges rapidly, in fact quadratic. The only problem is
that it solves for the roots of the function using its derivate. This forces us
to calculate both the first and second order derivates of G. In [1] Orchard
and Elliott suggestes that in region I the maximas and minimas of G − S
should be found, this makes it necessary to calculate the first and second
derivate of S. Now notice that if S don’t vary to swift, then G will have its
maximas/minimas exactly at the same angles, ψ:s, as G − S. In this case
S is csc2 which is a smooth and nice function. Therfore there is no reason
for us to calculate the derivate of S, it will do just fine with the first and
second derivate of G to locate the maximas/minimas. This saves a lot of
calculation. Another advantage is that it’s possible to use a function S that
has a non continues derivate. This is shown in figure 2, were S has been
taken as a triangle. The Matlab-code for the Newton algorithm may be
found in appendix A.1.

−150 −100 −50 0 50 100 150
−35

−30

−25

−20

−15

−10

−5

0

5

10

15

Figure 2: The beamform created using a triangle as the shaping function

The angles , ψi, i = 1, 2, . . . , N − 1, that are returned from the Newton
algorithm would now be used to calculate a better approximation by creating
a new vector called ĝ. This is done as follows. First the rotation angle ψr has

6

to be found. The ψr is needed to compute S over the specified area, region
I. The ψ0 and θ0 are related as ψ0 − ψr = kd cos θ0, were ψ0 and θ0 are the
angles at the peak of the beam. When S is supposed to be calculated for
110◦ < θ3 < 150◦. This allows us to express S in ψ as:

S(θ) = csc2 θ = csc2(arccos(ψ0 − ψr)) (7)

Now when we know both S and G we are able take the maximum values
of G and the maximans/minimas of G − S and assemble them together in
the vector ĝ.

The simplest way to create a better approximation to x is to use the
linear part of the Taylor’s series for ĝ, which is given as:

g = ĝ + A∆x (8)

Where the matrix A is the Jacobian matrix, (see appendix A.3) whose com-
ponents ai,j are defined by:

ai,j =
∂G(ψi,x)

∂xj

, i, j = 1, 2, . . . , N3 (9)

Solving equation (8) for ∆x gives us ∆x + x, which may be used as a
better approximate vector. This completes the iteration. Now by looping
this a number of times the difference between g and ĝ approaches zero. In
our case we had to use 5 iterations to get the vector ĝ to look like g, this
must be considered as a very rapid convergence.

3.2 Results

After having completed 5 iterations we had a beamform as in figure 3(a). We
now applied the algorithm described in section 4, this gave the result shown
in figure 3(b) which if compared to the unoptimized pattern is identical. The
only difference between the two patterns are the sign of the an:s in region I.
This change in sign only affects the root distribution as can be seen in figure
3(c) and 3(d), notice that the angle, bn, remains the same though the radius
ean is changed in some cases to e−an .

As a comparison the following relationships between Imax and Imin were
calculated.
Before optimization:

Imax

Imin

= 7.2083 (10)

3The true computation of S is done for 20◦ < θ < 60◦

7

0 20 40 60 80 100 120 140 160 180
−35

−30

−25

−20

−15

−10

−5

0

(a) Unoptimized pattern
in the θ-plane

0 20 40 60 80 100 120 140 160 180
−35

−30

−25

−20

−15

−10

−5

0

(b) Optimized pattern in
the θ-plane

 0.1714

 0.3429

 0.5143

 0.6857

 0.8571

 1.029

 1.2

30

210

60

240

90

270

120

300

150

330

180 0

(c) Distribution of the
roots for the unoptimized
pattern

 0.1714

 0.3429

 0.5143

 0.6857

 0.8571

 1.029

 1.2

30

210

60

240

90

270

120

300

150

330

180 0

(d) Distribution of the
roots for the optimized
pattern

Figure 3: Antenna pattern and corresponding root distribution before and
after optimizing the excitation In

After optimization:

Imax

Imin

= 5.2260 (11)

This shows clearly that the optimization well suits its purpose, and if
used the right way maybe it makes the design and implementation of the
real antenna possible. Also notice, as shown in figure 4, that the absolute
value of excitation changes dramatically, when the optimization is done.

8

0 5 10 15 20 25 30 35 40 45
1

2

3

4

5

6

7

8

(a) Unoptimized ampli-
tude distribution for the
excitation

0 5 10 15 20 25 30 35 40 45
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

(b) Optimized amplitude
distribution for the exci-
tation

0 5 10 15 20 25 30 35 40 45
−200

−150

−100

−50

0

50

100

150

200

(c) Unoptimized phase
distribution for the exci-
tation

0 5 10 15 20 25 30 35 40 45
−200

−150

−100

−50

0

50

100

150

200

(d) Optimized phase dis-
tribution for the excita-
tion

Figure 4: Distribution of the amplitude and phase before and after optimizing
the excitation In

4 Optimization on excitation of the elements

When an and bn is iterated to give an appropriate beamform, you can from
these values calculate the excitation, In, of each element using formula (2).
Since an and bn give the roots of the polynom, we used Matlab’s built-in
poly-function.

4.1 Why optimization?

In [1] Orchard and Elliott suggests that mirroring any of the roots that is
placed off the unit circle should give exactly the same beamform, but change
excitation of the elements quite dramatically. They also suggest that the

9

best solution is the one that gives the lowest ratio in amplitude, Imax/Imin

in excitation between the elements. As motivation on that they [1] say that
if these requirements are fullfilled then the lowest coupling between elements
are achieved, and therefore produces the best “calculations-to-real-world”
solution. We wanted to give the best solution to the given problem, so we
had to find the solution which gave the lowest ratio of amplitude on the
elements. We used a “brute-force” algorithm since we had no idea of how
the best solution could look like.

4.2 How should it be done?

The idea was to generate a matrix which, multiplied with a vector a should
give all permutations of an (see formulas 5 and 6). Then we should use it
to calculate the excitations In and thus finding max, min and so on. The
problem was, that if N1 is the number of roots placed off the circle, we
have 2N1 solutions to the problem. In our example we had 41 elements and
N1 = 15 at first. This gives 32768 solutions to test for. The generated matrix
was 15×32768, which Matlab couldn’t deal with at all. A better optimized
pattern gave N1 = 10 which leaved us with 1024 solutions to test, which was
possible to calculate.The execution time was lowered from not achiveable to
20-30 seconds on a Digital Alpha workstation.

The matrix we wanted to construct looked like


−1 1 −1 1 −1 1 · · ·
−1 −1 1 1 −1 −1 · · ·
−1 −1 −1 −1 1 1 · · ·
−1 −1 −1 −1 −1 −1 · · ·
−1 −1 −1 −1 −1 −1 · · ·
−1 −1 −1 −1 −1 −1 · · ·
−1 −1 −1 −1 −1 −1 · · ·
...

...
...

...
...

...
. . .




(12)

However we didn’t find a smart way to generate it in Matlab. Instead
we made our self a small C-program [4], see appendix B.1.

4.3 How well did it work?

Excitation of the elements in both the unoptimized and the optimized case
can be studied in figure 4. Since we haven’t had the possibility to test the
antenna in practice we can’t make any conclusion on how well it performs in
real life. Simulations with NEC could be an alternative way to at least do a
“near real life”-simulation for testing purposes.

10

From figure 4 we noticed that the excitation amplitude makes quite big
leaps between each element in the optimized case, compared to the unopti-
mized case. This seems quite odd since the lowest coupling between elements
is achived when the difference between excitation is low for neighbouring el-
ements. [1] calls the criterion we have used a “rough criterion”, which seems
true. The idea is good, but maybe another criterion should be used?

This gave us an idea, why not try something like, “lowest mean of absolute
value of amplitude between neighbouring elements” as criterion. Which may
be written as:

Min

(
1

N1 − 1

N1−1∑
n=1

|an+1 − an|
)

(13)

The idea was easy to implement so why not give it a shot. The only
thing that had to be changed was the selection algorithm, see appendix
A.4. The result was nicer in many ways, as can be seen in figure 5. If
compared to figure 4(b) there is easy to see that the two optimizing methods
gives a quite different distribution of the excitation. Note that the relation
between Imax and Imin in the alternative case is quite high, but the steps in
amplitude between the neighbouring elements is smaller. Phase distribution
is not presented since it always looks almost the same, independent of what
root distribution you choose.

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

4

(a) Alternative optimized
amplitude distribution for
the excitation

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

(b) Distribution of the
roots for the alternative
optimized pattern

Figure 5: Distribution of the amplitude and roots after the alternative opti-
mization

11

Clearly, there is a need for a better verification of what an optimized
excitation is. Since [1] was published in 1985 someone maybe already have
come up with a better definition of what a optimum excitation is. The results
presented here is just what we found interesting and maybe the are useful in
some way.

12

References

[1] H.J. Orchard & R.S. Elliott Optimising the synthesis of a shaped beam
antenna patterns Proc IEE, no 1 February 1985, page 63-68

[2] Lennart R̊ade & Bertil Westergren Beta Mathemathics Handbook Second
Edition, Studentlitteratur, Lund, 1990

[3] Lennart Edsberg Användarhandledning för Matlab v4.0 NADA KTH,
Stockholm, 1993

[4] Brian W. Kernighan & Dennis M. Ritchie The C programming language
Second Edition, Prentice Hall, New Jersey, 1988

13

A MATLAB-code

A.1 main.m

%%% This is the main program for calculating

%%% antenna patterns using the Orchard Elliott method.

%%%

%%% Written by Johan Skatt, Royal Institute of Technology 1997

%%%

%%% Usage: You’ll have to change the parameters in the

%%% specification part to them that you’ve got.

%%% You’ll also have to change the parameter

%%% given to the external C-program "binmat.c"

%%% It should be equal to N1.

%%%

%%% Eventually you would like to change some

%%% other things later on, hopfully this wouldn’t

%%% cause any problems.

clear,clf

%%% Here’s were you give the specifications !

% Makes theta to zero at broadside

thetar=pi/2;

% The limits for the beam

theta0=110*pi/180;

theta1=150*pi/180;

% N1 are the number of zeros in region I (the beam)

N1=10;

% N2 are the number of zeros in region II (the sidelobes)

N2=30;

n=1:N1+N2;

%%% Create wanted g

gg=[];

14

% -20 dB in first half of region II, using 25 zeros

gg=[gg -20*ones(1,25)];

% -30 dB in second half of region II, using 5 zeros

gg=[gg -30*ones(1,5)];

% 0.5dB ripple in region I, using 10 zeros

for k=1:21

if rem(k,2)==0 gg=[gg -0.5];

else gg=[gg 0.5]; end

end

%%% End of specification !

%%% Some handy constants

fi=-pi:0.01:pi;

K=180/pi;

%%% Some initializing

% Generate some nice starting values for a, b, C1 and C2

b=(2*n/42-1)*pi;

a=0.02*ones(1,N1);

C1=0;

C2=0;

% Assemble a, b and C1 into the iteration vector x

x=[a b C1];

%%% Here is the main loop !

for n=1:5

% Find psi at maximas/minimas

psii=Newton(x,N1,N2);

psi2=psii(:,1:N2);

psi1=psii(:,N2+1:2*N1+N2+1);

% Find the rotate angle psir

psi0=psii(length(psii));

psir=psi0-pi*cos(theta0);

15

% Find the values for G-S at psi1, S is cosecans^2

C2=(csc(acos((psi0-psir)/pi)-thetar)).^2;

S=(csc(acos((psi1-psir)/pi)-thetar)).^2-C2;

g1=G(x,psi1,N1,N2)-S;

% Find the values for G at psi2

g2=G(x,psi2,N1,N2);

% Assemble into the gtop vector

gtop=[g2 g1];

% Calculate Jacobian

A=Jacobi(x,psii,N1,N2);

% Calculate deltax

deltax=A\(gg’-gtop’);

deltax=deltax’;

x=x+deltax;

end

%%% End of main loop !

%%% Plot the wanted beam in the psi-plane

plot(K*fi,G(x,fi,N1,N2));

title(’Beamform in the psi-plane’);

pause

%%% Plot the wanted beam in the theta-plane, unoptimized

theta=0:0.01:pi;

% Plot specification

spec;

axis([0 180 -35 1]);

hold on;

pause

% Plot calculated beam

plot(K*theta,G(x,pi*cos(theta)+psir,N1,N2));

axis([0 180 -35 1]), hold off;

%title(’Unoptimized Beamform in the theta-plane’);

print -deps thetaunopt.eps

16

pause

%%% Plot the zeros in the w-plane

a1=x(:,1:N1);

a2=zeros(1,N2);

b2=x(:,N1+1:N1+N2);

b1=x(:,N1+N2+1:2*N1+N2);

a=[a2 a1];

b=[b2 b1];

polar(b,exp(a),’ro’);

%title(’Unoptimized zeros in the w-plane’);

print -deps wunopt.eps

pause

%%% Calculate the relationship between the largest exitation

%%% Imax and the smallest Imin,

%%% to compare with the optimum version later on

nonoptimalI=max(abs(calcI(x,N1,N2)))/min(abs(calcI(x,N1,N2)))

% Plot the absolute value of the excitation

plot(abs(calcI(x,N1,N2)),’o’);

print -deps absunoptex.eps

pause

% Plot the phase of the excitation

plot(K*angle(calcI(x,N1,N2)),’o’);

print -deps phaseunoptex.eps

pause

%%% Calculate the optimum exitation, by means of minimazing

%%% the relationship Imax/Imin.

disp(’Trying to optimize the result’);

% Generate the binary matrix with an external program (N1=10)

disp(’Generating the matrix’);

!binmat 10 binary.m

[ourI]=bestI(x,N1,N2);

[optimalI,optimalIndex]=min(ourI(:,1));

optimalI

17

max(ourI(:,1));

x(1:N1) = x(1:N1).*ourI(optimalIndex, 2:N1+1);

% Plot the absolute value of the optimum excitation

plot(abs(calcI(x,N1,N2)),’o’);

print -deps absoptex.eps

pause

% Plot the phase of the excitation

plot(K*angle(calcI(x,N1,N2)),’o’);

print -deps phaseoptex.eps

pause

%%% Plot the wanted beam in the theta-plane, optimized

% Plot specification

spec;

hold on;

% Plot calculated beam

Q=G(x,pi*cos(theta)+psir,N1,N2);

% Allow a bit of floating up or down

Gmax=max(Q);

plot(K*theta,Q-Gmax+0.5);

axis([0 180 -35 1]), hold off;

%title(’Optimized Beamform in the theta-plane’);

print -deps thetaopt.eps

pause

%%% Plot the optimized zeros in the w-plane

a1=x(:,1:N1);

a2=zeros(1,N2);

b2=x(:,N1+1:N1+N2);

b1=x(:,N1+N2+1:2*N1+N2);

a=[a2 a1];

b=[b2 b1];

polar(b,exp(a),’go’);

%title(’Optimized zeros in the w-plane’);

print -deps wopt.eps

18

A.2 Newton.m

function [result]=Newton(x,N1,N2);

% Calculates the maximas and minimas, using Newton method.

% Returns a vector containing the values of psi at

% the extreme points.

% Written by Johan Skatt, Royal Institute of Technology 1997

% Usage: Newton(x,N1,N2)

a1=x(:,1:N1);

a2=zeros(1,N2);

b2=x(:,N1+1:N1+N2);

b1=x(:,N1+N2+1:2*N1+N2);

C1=x(:,2*N1+N2+1);

a=[a2 a1];

b=[b2 b1];

% Bild up the start psi-vector

psi=[(-pi+b(1))/2];

for n=1:N2-1

psi=[psi (b(n)+b(n+1))/2];

end

for n=N2:N1+N2-1

psi=[psi (b(n)+b(n+1))/2 b(n+1)];

end

psi=[psi 3];

M=20/log(10);

% The Newton algorithm for finding the zeros.

for n=1:length(psi)

if psi(n)==0, psi(n)=0.0001; end

x=psi(n); dx=x; iter=0;

while abs(dx/x)>1e-4 & iter<20

D=1-2*exp(a).*cos(x-b)+exp(2*a);

Gprim=M*sum(exp(a).*sin(x-b)./D)-M*sin(x)./(2+2*cos(x));

Q=M/(2+2*cos(x));

Gbiss=M*sum((exp(a).*((1+exp(2*a)).*cos(x-b)-2*exp(a)))./D.^2)-Q;

dx=-Gprim/Gbiss; x=x+dx; iter=iter+1;

end

if iter==20,

disp(’You are in trouble here, it does not converge’);

19

end

result=[result x];

end

A.3 Jacobi.m

function [result]=Jacobi(x, psi,N1,N2);

% Calculates the Jacobian matrix according to

% Orchard et al formula 6.

% Returns the Jacobian matrix

% Written by Johan Skatt, Royal Institute of Technology 1997

% Usage: Jacobi(x,psi,N1,N2)

a1=x(:,1:N1);

a2=zeros(1,N2);

b2=x(:,N1+1:N1+N2);

b1=x(:,N1+N2+1:2*N1+N2);

C1=x(:,2*N1+N2+1);

M=20/log(10);

a=[a1 a2 a1];

b=[b1 b2 b1];

D=[];

for n=1:2*N1+N2+1

D=[D; 1-2*exp(a).*cos(psi(n)-b)+exp(2*a)];

end

a=[a2 a1];

b=[b2 b1];

diffGb=[];

diffGa=[];

for n=1:2*N1+N2+1

diffGa=[diffGa; M*exp(a1).*(exp(a1)-cos(psi(n)-b1))];

diffGb=[diffGb; -M*exp(a).*sin(psi(n)-b)];

end

part1=[diffGa diffGb]./D;

result=[part1 ones(2*N1+N2+1,1)];

20

A.4 bestI.m

function [compare]=bestI(x,N1,N2)

%function [bestexc, resultx]=bestI(x,N1,N2)

% Returns the "best" excitation of elements and corresponding x

% Written by Stefan Petersen

% Royal Institute of Technology 1997

% The alternative method presented in the paper is commented out

% in the loop.

% Read the binary matrix

disp(’Started getting the binary matrix. Please wait!’);

binary;

disp(’OK!’);

xmod=x;

compare=[];

[size_binmat, dummy]=size(binmat(:,1));

disp(’Optimizing’);

for exc=1:size_binmat

xmod(1:N1) = binmat(exc,:).*x(1:N1);

I=calcI(xmod,N1,N2);

% diffI = diff(I);

% compare(exc,:) = [mean(abs(I)) binmat(exc,:)];

compare(exc,:) = [max(abs(I)) / min(abs(I)) binmat(exc,:)];

end

disp(’Optimizing ready’);

A.5 calcI.m

function [result]=calcI(x,N1,N2)

% Returns excitation I of all elements in complex form.

% Written by Johan Skatt & Stefan Petersen

% Royal Institute of Technology 1997

% Usage: calcI(x,N1,N2)

a1=x(:,1:N1);

a2=zeros(1,N2);

b2=x(:,N1+1:N1+N2);

21

b1=x(:,N1+N2+1:2*N1+N2);

C1=x(:,2*N1+N2+1);

a=[a2 a1];

b=[b2 b1];

result=poly(exp(a+i*b));

A.6 G.m

function [result]=G(x, psi, N1, N2);

% Calculates the powerpattern function G according to

% Orchard et al formula 5. Returns a vector containing

% the value of G at the given psi angle(s).

% Written by Johan Skatt & Stefan Petersen

% Royal Institute of Technology 1997

% Usage: G(x,psi,N1,N2)

a1=x(:,1:N1);

a2=zeros(1,N2);

b2=x(:,N1+1:2*N1);

b1=x(:,2*N1+1:2*N1+N2);

C1=x(:,2*N1+N2+1);

a=[a2 a1];

b=[b2 b1];

result=[];

for n=1:length(psi)

part1=10.*log10(1-2*exp(a).*cos(psi(n)-b)+exp(2*a));

part2=10*log10(2*(1+cos(psi(n))))+C1;

result=[result sum(part1)+part2];

end

A.7 spec.m

% Plots the wanted beamform in the theta-plane

% Written by Johan Skatt, Royal Institute of Technology 1997

temp=110*pi/180:0.01:151*pi/180;

plot([0 110],[-20 -20],’c’), hold on;

plot([110 110],[-20 0],’c’), hold on;

22

S=(csc(temp-pi/2)).^2;

S=S-max(S);

plot(180*temp/pi,S,’c’), hold on;

plot([150 150],[min(S) -30],’c’), hold on;

plot([150 180],[-30 -30],’c’), hold on;

% Ripple +/- 0.5 dB

plot(180*temp/pi,S+0.5,’r--’), hold on;

plot(180*temp/pi,S-0.5,’r--’), hold on;

A.8 absmain.m

%%% This is an example of how an antenna pattern could be

%%% created using a triangle as the S function

%%%

%%% Written by Johan Skatt, Royal Institute of Technology 1997

clear,clf

%%% Here’s were you give the specifications !

% Makes theta to zero at broadside

thetar=pi/2;

% The limits for the beam

theta0=110*pi/180;

theta1=150*pi/180;

% N1 are the number of zeros in region I (the beam)

N1=10;

% N2 are the number of zeros in region II (the sidelobes)

N2=30;

n=1:N1+N2;

%%% Create wanted g

gg=[];

% -20 dB in first half of region II, using 25 zeros

gg=[gg -20*ones(1,25)];

23

% -30 dB in second half of region II, using 5 zeros

gg=[gg -30*ones(1,5)];

% 0.5dB ripple in region I, using 10 zeros

for k=1:21

if rem(k,2)==0 gg=[gg -0.5];

else gg=[gg 0.5]; end

end

%%% End of specification !

%%% Some handy constants

fi=-pi:0.01:pi;

K=180/pi;

%%% Some initializing

% Generate some nice starting values for a, b, C1 and C2

b=(2*n/42-1)*pi;

a=0.02*ones(1,N1);

C1=0;

C2=0;

% Assemble a, b and C1 into the iteration vector x

x=[a b C1];

%%% Here is the main loop !

for n=1:5

% Find psi at maximas/minimas

psii=Newton(x,N1,N2);

psi2=psii(:,1:N2);

psi1=psii(:,N2+1:2*N1+N2+1);

% Find the rotate angle psir

psi0=psii(length(psii));

psir=psi0-pi*cos(theta0);

% Find the values for G-S at psi1, S is the triangle function

24

S=[0 1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 2 1 0]-10;

g1=G(x,psi1,N1,N2)-S;

% Find the values for G at psi2

g2=G(x,psi2,N1,N2);

% Assemble into the gtop vector

gtop=[g2 g1];

% Calculate Jacobian

A=Jacobi(x,psii,N1,N2);

% Calculate deltax

deltax=A\(gg’-gtop’);

deltax=deltax’;

x=x+deltax;

end

%%% End of main loop !

%%% Plot the wanted beam in the psi-plane

plot(K*fi,G(x,fi,N1,N2)), axis([-180 180 -35 20]);

%title(’Beamform in the psi-plane’);

print -deps abs.eps

pause

%%% Plot the zeros in the w-plane

a1=x(:,1:N1);

a2=zeros(1,N2);

b2=x(:,N1+1:N1+N2);

b1=x(:,N1+N2+1:2*N1+N2);

a=[a2 a1];

b=[b2 b1];

polar(b,exp(a),’ro’);

title(’Unoptimized zeros in the w-plane’);

pause

%%% Calculate the optimum exitation, by means of minimazing

%%% the relationship Imax/Imin.

disp(’Trying to optimize the result’);

25

% Generate the binary matrix with an external program (N1=10)

disp(’Generating the matrix’);

!binmat 10 binary.m

[ourI]=bestI(x,N1,N2);

[optimalI,optimalIndex]=min(ourI(:,1));

x(1:N1) = x(1:N1).*ourI(optimalIndex, 2:N1+1);

%%% Plot the optimized zeros in the w-plane

a1=x(:,1:N1);

a2=zeros(1,N2);

b2=x(:,N1+1:N1+N2);

b1=x(:,N1+N2+1:2*N1+N2);

a=[a2 a1];

b=[b2 b1];

polar(b,exp(a),’go’);

title(’Optimized zeros in the w-plane’);

B C-code

B.1 binmat.c

/* Program to generate a binary matrix in

* textformat for simple inclusion

* in Matlab.N cols and 2^N rows.

*

* Stefan Petersen, Royal Institute of Technology, 1997

*/

#include <stdlib.h>

#include <stdio.h>

void usage()

{

printf("(C) Stefan Petersen, ");

printf("Royal Institute of Technology, 1997\n");

printf("\nUsage:\n");

printf("binmat <N> <filename>\n");

26

printf("where N is number of zeroes off the circle and \n");

printf("filename is the name of file to ");

printf("save the matrix in.\n");

return;

}

void main(int argc, char *argv[])

{

FILE *fs;

char *filename;

char matrixname[] = "binmat";

int n,N;

long temp,m,M;

if (argc != 3) {

printf("Wrong number of arguments!\n");

usage();

exit(1);

}

if ((N = atoi(argv[1])) == 0){

printf("Illegal form of N given\n");

usage();

exit(1);

}

M = (1<<N);

filename = argv[2];

if((fs = fopen(filename, "w+")) == NULL){

fprintf(stderr, "Couldn’t create %s\n", filename);

exit(1);

}

fprintf(fs, "%s=[", matrixname);

for(m = 0; m < M; m++){

27

temp = m;

for(n = 0; n < N; n++){

fprintf(fs, "%d ", (temp & 0x01L)?1:-1);

temp>>=1;

}

fprintf(fs, ";\n");

}

fprintf(fs, "];\n");

fclose(fs);

return;

}

28

